
Secure coding trainingSecure coding training
Secure development on all levels

Gerard Frankowski, PSNC
Poznań, 22-23 June 2010

connect • communicate • collaborate



The goal of this presentation

A smooth introduction to the training
Why secure programming?
Cost of software bugsCost of software bugs
Some spectacular programming mistakes
What levels (layers) should be differentiated when talking 
about secure applications

– Technologies (the main subject of the Day 1)
– Functionality
– Configuration
– Coding patterns (the main subject of the Day 2)

connect • communicate • collaborate

– Coding patterns (the main subject of the Day 2)

This presentation is intended also for the project 
leaders

Let your people have resources to consume on learning 
secure programming!



Why the code is insecure?

We are not robots, we make mistakes
Let the software be 30 000 KLOC (30 millions lines) long

– Windows 2000 was of that size– Windows 2000 was of that size

According to the Carnegie Mellon University’s CyLab, 1 
KLOC (1000 lines of code) contains up to 30 software 
bugs
Let’s make some further assumptions:

– 20 software bugs (of all kinds) in 1 KLOC
– only 5% of them are security-related

connect • communicate • collaborate

– only 5% of them are security-related
– only 1% of the latter give system access 

30 000 000 * 0.02 * 0.05 * 0.01 = 300
The attacker needs to find only 1 out of those 300…



Why the code does matter?

It is the administrator who should take care of the 
system security, isn’t it?

Appropriate server configurationAppropriate server configuration
Firewall policies…

22

666

123

8080

http://somewhere.pl?param=<script>
alert(document.cookie)</script>

connect • communicate • collaborate

The response must be “defence in-depth”
We defend on every level 80

http://somewhere.pl?param=<scrip
t>alert(document.cookie)</script>



But are the software bugs expensive?

NIST Report ”The Economic Impacts of Inadequate 
Infrastructure for Software Testing” (2002)

http://www.nist.gov/director/planning/upload/report02-3.pdfhttp://www.nist.gov/director/planning/upload/report02-3.pdf
This is more general, not only security bugs

– But they are bugs as well…

connect • communicate • collaborate



Another chart from the NIST report

connect • communicate • collaborate



Were there any serious software 
bugs?

Therac25 equipment
Ariane 5 rocket
Air-Traffic Control System in LA
Mars exploration problems
More:

http://computingcases.org/case_materials/therac/therac_
case_intro.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html

connect • communicate • collaborate

http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html

The specifics of security bugs
Example: MS Blaster (Lovesan)



Therac 25

Cancer treatment with radiotherapy
1985-1987: many radiation overdosing, at least 5 
people died
Numerous errors in control software

Race condition error – if an operator worked too fast (!) 
several parameters could not be initialized properly
Source code from the previous version was applied, but 
the older version had additional hardware protections

connect • communicate • collaborate

Overflow error: a flag was incremented and accidentaly 
zeroed
No one thought about an independent code review



Ariane 5

European Space Agency project for putting 
satellites into Earth orbit

10 years, 7.000.000.000 USD10 years, 7.000.000.000 USD

36.7 seconds after the launch, the first Ariane
rocket crashed into the ground

The rocket cost: 500M USD 

Overflow error
64-bit value (sideways velocity of the rocket) was 

connect • communicate • collaborate

64-bit value (sideways velocity of the rocket) was 
intended to be saved into 16-bit variable
An error occured in the primary working unit
The secondary unit took control, but the same error 
occurred



NASA Mars Climate Orbiter

A key part of NASA Mars exploration program
Worth 125M USD

In 1999 it went too low and was never heard again
Lack of conversion check

Two unit systems were used in the orbiter software: 
metric and English
In the routines managing the orbit change, someone 
forgot to assure appropriate conversion check

connect • communicate • collaborate

Too little tests

Another Mars probe lost due to software errors
Mars Global Surveyor (2006, a series of errors started 
with two bad memory addresses)



Air-Traffic control system, LA

In 2004, air-traffic control system in LA lost voice 
contact with about 400 airplanes

Happily, no one suffered – currently there are onboard Happily, no one suffered – currently there are onboard 
anti-collision systems like TCAS

The system unexpectedly shut down
Control unit contained a counter which measured 
milliseconds
The greatest number that could be stored in the system, 
was 232 (232 milliseconds is ca. 50 days)

connect • communicate • collaborate

was 232 (232 milliseconds is ca. 50 days)
There were special procedures to reset the software 
every 30 days, which apparently had not been done that 
time



Security bugs

Security bugs have slightly different nature
Usually, they are more oriented on stealing data, money, 
research resultsresearch results
However, accessibility is one of the security facets…

On the other hand, they introduce other threats
Loses on trust
May even kill whole enterprises 

– Blue Security and Blue Frog antispam system case (2006)

connect • communicate • collaborate



MS Blaster (Lovesan)

An example of spectacular security bug
Microsoft DCOM RPC buffer overrun (found by our 
PSNC colleagues)PSNC colleagues)

MS Blaster virus (2003)
Ca. 25M computers infected (2005)
Direct loses: 1.500.000.000 USD

connect • communicate • collaboratehttp://www.security.nl/image/246

http://pl.wikipedia.org



Top excuses for not writing secure 
code

No one will do that!
Why would anyone do that?
We’ve never been attackedWe’ve never been attacked
We’re secure – we use cryptography
We’re secure – we use ACLs
We’re secure – we use a firewall
We’ve reviewed the code, and there are no 
security bugs

connect • communicate • collaborate

security bugs
We know it’s the default, but the administrator can 
turn it off
If we don’t run as administrator, 
stuff breaks



Should we care if the software will 
never be perfect?

We should care – there is security 
economy!

The economic factors become more The economic factors become more 
meaningful for everyone, including attackers
Your system is in danger when

Attack cost <= Value of your data

Therefore we should make the 
attacker’s goal more difficult

connect • communicate • collaborate

attacker’s goal more difficult
Better security systems
Less software errors



Should the developer be security 
specialist then?

Obviously not – everyone has got an own job
We do not expect the developers to learn about network 
attacks or exploiting vulnerabilitiesattacks or exploiting vulnerabilities

But we think we can expect the developers…
To know the basics of secure coding (including simple 
examples of attacks for better understanding)
To apply secure coding practices in their favourite 
programming language (or the one they have to work with)
To create well-commented and easy-to-understand code

connect • communicate • collaborate

To create well-commented and easy-to-understand code
To apply simple tools detecting the most obvious security 
flaws
Last but not least, a „secure coder” will be more competitive 
;)



Security layers of secure 
programming

Similarly to IT security as a whole, creating 
software may be divided onto layers

Defence-in-depth principle should be applied as wellDefence-in-depth principle should be applied as well

At least 4 layers might be differentiated
Technologies
Functionality
Configuration
Coding patterns

connect • communicate • collaborate

Coding patterns

Remember about other groups that do matter
Project leaders
System, network and server administrators
Users (awareness!)



Security layers (1)

Technologies
There are useful solutions which may help (e.g. HTTPS, 
SSL, VPN, PKI)SSL, VPN, PKI)
You may apply them or not
Will be mentioned quite thoroughly during Day 1

Functionality
Your application may lack necessary security-related 
functionality…

–

connect • communicate • collaborate

– Lack of character hiding when typing login passwords

… or this functionality may be improperly implemented
– Too expressive error handling mechanism
– Different error messages for bad username and bad password

A general subject for Day 1



Security layers (2)

Configuration
The user must be able to configure the application 
securely securely 
The default configuration must be carefully designed 
(apparent security/market usability tradeoff)
Another general issue to be mentioned during Day 1

Coding patterns
Even the best functionality and the most secured 
configuration may be implemented in an insecure way

connect • communicate • collaborate

configuration may be implemented in an insecure way
The subject of the whole Day 2



Summary

Software will contain vulnerabilities (including 
security bugs)

However their number should be minimizedHowever their number should be minimized

Software bugs will matter even if we have other 
layers properly secured
There were many cases of spectacular software bugs
Security economy encourages us not to make 
applications 100% secure (which is impossible), but 

connect • communicate • collaborate

applications 100% secure (which is impossible), but 
to make breaking them cost-ineffective for attacker 
Secure programming is one of the layer of defense

Itself it may be divided into different layers: technologies, 
functionality, configuration, coding 
patterns


